
Computer Physics Communications 183 (2012) 2054–2062
Contents lists available at SciVerse ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Massively parallel chemical potential calculation on graphics processing units
Kevin B. Daly, Jay B. Benziger, Pablo G. Debenedetti, Athanassios Z. Panagiotopoulos ∗
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States

a r t i c l e i n f o

Article history:
Received 6 March 2012
Received in revised form
1 May 2012
Accepted 3 May 2012
Available online 11 May 2012

Keywords:
Monte Carlo methods
Phase equilibria
Graphics processing units
Free energy

a b s t r a c t

One- and two-stage free energy methods are common approaches for calculating the chemical potential
from a molecular dynamics or Monte Carlo molecular simulation trajectory. Although these methods
require significant amounts of CPU time spent on post-simulation analysis, this analysis step is well-
suited for parallel execution. In this work, we implement this analysis step on graphics processing units
(GPUs), an architecture that is optimized for massively parallel computation. A key issue in porting
these free energy methods to GPUs is the trade-off between software efficiency and sampling efficiency.
In particular, fixed performance costs in the software favor a higher number of insertion moves per
configuration. However, higher numbers of moves lead to lower sampling efficiency. We explore this
issue in detail, and find that for a dense, strongly interacting system of small molecules like liquid water,
the optimal number of insertions per configuration can be as high as 105 for a two-stage approach like
Bennett’s method. We also find that our GPU implementation accelerates chemical potential calculations
by as much as 60-fold when compared to an efficient, widely available CPU code running on a single CPU
core.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Calculating differences in free energy between two states
of a system is an important task for statistical physics. These
systems can be as diverse as proteins, ligands, hygroscopic
membranes, and coexisting vapor and liquid phases [1–3]. Free
energy calculations typically begin by sampling configurations
in a convenient ensemble using either molecular dynamics or
Monte Carlo simulations. These configurations may come from
the initial state, the final state, or one of many intermediate
states, depending on the method of calculating free energy.
Some methods also require extensive post-simulation analysis of
these configurations, in particular methods involving many trial
insertions and deletions. The CPU time required by this analysis
may exceed that of generating the configurations, depending on
the system and the method. Therefore, in order to minimize the
total CPU time, the method should be chosen carefully.

In the test-particle insertion (TPI) method [4], much of the
computational burden is shifted to post-simulation analysis. The
calculated quantity is the excess chemical potential, that is to say
the free energy difference between systems compared with N and
N+1particles, and the corresponding quantity in an ideal gas (non-
interacting) state, holding other independent thermodynamic
variables fixed. The method consists of performing random,

∗ Corresponding author.
E-mail address: azp@princeton.edu (A.Z. Panagiotopoulos).

0010-4655/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2012.05.006
independent test insertions in configurations of the N-particle
initial state and computing the resulting energy changes. The
statistical mechanical expression linking appropriate averages of
the energy change upon attempted insertion and the chemical
potential is given in Section 2. Multiple insertions may be
performed per configuration, resulting in a trade-off between
the CPU time needed to generate the configurations and that
required for the post-simulation analysis. Even after minimizing
the total CPU time, this method can still be impractical for dense,
strongly interacting systems like liquid water, as we demonstrate
in Section 4.

A two-stage technique, like Bennett’s method [5], can greatly
improve sampling efficiency for these difficult systems. Like the
TPI method, Bennett’s method involves randomly inserting test
molecules in the N-particle system. In addition, it performs test
deletions from the N + 1-particle system. It then optimally
combines the energy changes from these two types of moves in
order to minimize the variance of the free energy estimate. The
relevant statistical mechanical equations are given in Section 2.
A crucial assumption of this method is that test insertions and
deletions are uncorrelated. Therefore, care must be taken when
performing many test moves in the same configuration. So far,
much of the published work on Bennett’s method involves a
single insertion and deletion per configuration [6–8], shifting the
computational burden to generating configurations.

A method that relies even more heavily on generating configu-
rations is thermodynamic integration. This approach involves sim-
ulations at many intermediate states, but does not require any
post-simulation test moves. Instead, it estimates the free energy

http://dx.doi.org/10.1016/j.cpc.2012.05.006
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:azp@princeton.edu
http://dx.doi.org/10.1016/j.cpc.2012.05.006

K.B. Daly et al. / Computer Physics Communications 183 (2012) 2054–2062 2055
based on the ensemble averages of the potential energy for all of
the state points. Like Bennett’s method, it has been successfully
applied to dense, strongly-interacting systems [2]. Note that both
Bennett’s and the OS method are still limited to systems of small
molecules, in which there is appreciable overlap between the dis-
tributions of insertion and deletion energies. For larger molecules,
a method involving more than two stages may be necessary [9].

A key advantage of shifting the computational burden to the
post-simulation analysis is that this step is usually straightforward
to implement on parallel computer architectures. In contrast, par-
allelizing Monte Carlo is much more difficult. While molecular dy-
namics algorithms have been efficiently parallelized, diminishing
returns in performance are seen when executed over large num-
bers of CPU cores [10]. The post-simulation analysis can be par-
allelized in multiple ways for the TPI and Bennett’s method. For
example, one may divide configurations from a single simulation
among different CPUs. Alternatively, one may divide test inser-
tions/deletions for a given configuration among multiple CPUs.

This second parallel implementation of the post-simulation
analysis would seem to be the least attractive, given that
the other method is simpler to implement. However, it is
an appropriate implementation for graphical processing units
(GPUs), a parallel architecture with a rapidly growing number of
applications in scientific computing [11]. GPUs consist of hundreds
of cores executing floating point operations in parallel, leading
to impressive performance gains over a single CPU for certain
types of particle simulations [10]. However, GPUs have O(10 MB)
of global memory available per core, much less than the O(1 GB)
of RAM available per core in a typical CPU cluster. Therefore,
GPUs may not be capable of simultaneously storing data for
many configurations. This memory limitation suggests that GPUs
should perform insertions on one configuration at a time, dividing
insertions among many cores.

The optimal implementation of the post-simulation analysis
step is not only a function of the amount of global memory, but
also of the speed at which it can be read or written to. Bandwidth
between global memory and GPU cores can be over 100 GB/s [12],
whereas bandwidth between global memory and CPU memory
is typically only 2–6 GB/s [10]. Therefore, reading and writing
data between the CPU and GPU could become a computational
bottleneck, and ideally should be kept to a minimum in order to
take advantage of the two aforementioned strengths of GPUs. One
example of data transfer between the CPU and GPU is reading
configuration data. Clearly, this data transfer would account for a
decreasing share of the computation time if an increasing number
of test moves are to be performed per configuration on the GPU.
However, as mentioned above, performing more test moves per
configuration decreases sampling efficiency. Therefore, an optimal
number of test moves per configuration must be found in order to
maximize performance on GPUs.

Reading configuration data is not the only fixed performance
cost per configuration demanded by chemical potential calcula-
tions on GPUs. If calculations are performed on a system with
electrostatic interactions, then these calculations require the elec-
trostatic potential as a function of particle positions. The potential
is typically computed using mesh-based Ewald sums [13], which
involve interpolating over a three-dimensional grid that is constant
for a given configuration. Ewald sums also involve short-range in-
teractions betweenpairs of particles. Calculating these interactions
efficiently requires a cell list [14, p. 550], a data structure that is
constant for a given configuration, just like the long-range electro-
static grid. These two additional fixed performance costs further
favor large numbers of insertions per configuration.

To the best of our knowledge, no prior publication has described
an implementation of chemical potential calculations on GPUs.
As mentioned earlier, GPUs have dramatically improved the
performance of other types of calculations involving systems
of particles. For example, a molecular dynamics package on
GPUs, HOOMD-blue, can speed up simulations by one to two
orders of magnitude in comparison to a single CPU core when
executed on an NVIDIA GTX 480 graphics card [10]. This card,
like other GPUs, is designed specifically for computation with
high parallelism and arithmetic intensity. On the other hand, CPUs
have a higher fraction of transistors devoted to data caching and
flow control. If we can achieve a speed-up for chemical potential
calculations similar to what has been observed for other types of
calculations involving particles, then dense, strongly-interacting
systems will become more accessible. Achieving the maximum
speed-up requires locating the optimal number of insertions
per configuration that balances sampling efficiency with GPU
performance. Accordingly, the goal of this paper is to implement
chemical potential calculations on GPUs while at the same time
addressing the problem of identifying the optimal number of
insertions/deletions.

This paper focuses on three methods for calculating the chem-
ical potential that involve significant amounts of post-simulation
analysis: TPI, Bennett’s method, and overlap sampling (OS) [6],
which is closely related to Bennett’smethod. Although this paper is
concerned primarily with calculating the chemical potential, these
methods can be used to calculate other types of free energy differ-
ences as well. We summarize the working equations in Section 2.
In Section 3 we describe the implementation of these techniques
on GPUs. In Section 4we test our implementation for two systems:
water and Lennard-Jones particles, and we also explore the effects
of varying the number of insertions per configuration. The main
conclusions are summarized in Section 5.

2. Chemical potential methods

The chemical potential methods that we examine involve
computing the changes in potential energy upon randomly
inserting an additional ‘‘test particle’’ into the N-particle system.
These energy changes can be related to the excess chemical
potential through the formula [4]

exp(−βµex) = ⟨exp(−βu)⟩N , (1)

which is valid for the NVT ensemble. In the above equation, β =
1/kT (k is Boltzmann’s constant), andµex is the difference between
the chemical potential and that of an ideal gas at the same density
and temperature. The angle bracketswith the ‘N ’ subscript indicate
an ensemble average performed on the N-particle system. u is the
change in potential energy for a single random insertion.

In addition to test insertions, test deletions in the N + 1-
particle systemare required in the Bennett andOSmethods. TheOS
method relates the potential energy changes from both insertions
and deletions to the chemical potential with the formula [6]

exp(−βµex) =
⟨exp(−βu/2)⟩N
⟨exp(βu/2)⟩N+1

, (2)

valid for the NVT ensemble. u is the change in the potential energy
for either a single random insertion in the N-particle system or
deletion in the N + 1-particle system. Bennett’s method is based
on a similar formula with an added weighting function [6],

exp(−βµex) =
⟨w(u) exp(−βu/2)⟩N
⟨w(u) exp(βu/2)⟩N+1

(3)

w(u) = 1/ cosh[β(u− C)/2] (4)

βC = βµex
+ ln(n1/n0), (5)

valid for the NVT ensemble. w(u) is chosen to minimize the
variance of βµex and depends on a parameter C that is not known
beforehand. C in turn depends on the number of insertions n0

2056 K.B. Daly et al. / Computer Physics Communications 183 (2012) 2054–2062
and deletions n1, as well as the chemical potential. Bennett’s
method assumes that insertions and deletions are uncorrelated,
an assumption that becomes increasingly worse with increasing
numbers of test moves in the same configuration, as demonstrated
in Section 4.

Since C is not known beforehand, it must be solved for self-
consistently using Eqs. (3) and (5). Oneway to do this is by running
a series of chemical potential calculations on the same trajectory,
iterating over C and µ until Eq. (5) is satisfied. Alternatively, Eq.
(3) can be rewritten in terms of the probability density functions
of changes in the potential energy due to insertions and deletions,
f (u) and g(u) respectively,

exp[−βµex
] =

w(u) exp(−βu/2)f (u)du
w(u) exp(βu/2)g(u)du

(6)

f (u) and g(u) can be computed during the course of a single
chemical potential calculation by simply creating histograms of
insertion or deletion potential energies. Then Eq. (6) can be solved
together with (5) using a simple root-finding algorithm like the
bisection method.

While Eqs. (1)–(3) are all derived for the NVT ensemble, the
NPT ensemble is usually more convenient for comparison with
experiments. The NPT analogue of Eq. (1) is well known [15]:

exp(−µex) = ⟨exp(−βx)⟩N (7)

where x = u− ln(V/⟨V ⟩)/β . We can obtain similar expressions for
the OS method and Bennett’s method by performing derivations
nearly identical to those in Refs. [6,5], respectively. For the OS
method, we obtain

exp(−βµex) =
⟨exp(−βx/2)⟩N
⟨exp(βx/2)⟩N+1

. (8)

For Bennett’s method, we obtain

exp(−βµex) =
⟨w(x) exp(−βx/2)⟩N
⟨w(x) exp(βx/2)⟩N+1

. (9)

Eqs. (1)–(3) or (7)–(9) yield estimates for the chemical potential
that can be transformed into fugacities, which are convenient
when comparing to experiments, using the following relation:

f =
ρ

β
exp(βµex) (10)

where ρ is the density of the fluid.

3. Implementation

A convenient way to implement codes on GPUs is in the CUDA
C programming environment. In this environment, code to be run
on the GPU is organized into functions that are executed multiple
times in parallel per call. These functions are referred to as kernel
functions, and executions within the same call are referred to as
threads. Threads are executed in batches called blocks, the size of
which is defined by the user. Depending on their size, 15–120
blocks can be running simultaneously on an NVIDIA GTX 480, for
example, though an almost unlimited number can be queued by
a single call to a kernel function [16]. Within a block, threads
can access a 48 kB pool of shared memory. Threads from any
block can access a much larger pool of global memory that can
be up to 6 GB. However, transactions with global memory are
slower than those with shared memory. Threads within a block
can be synchronized at any point in the code, in which case
they wait for all other threads within the same block to reach
the point of synchronization. In addition, threads can be given
exclusive read/write/modify access to a 32-bit or 64-bit word
in global memory by using the atomic operations provided by
CUDA. Synchronization and atomic operationsmake CUDA flexible
enough to implement algorithms that are not strictly parallel,
e.g. computing histograms.

We have chosen to code the chemical potential calculation
as a single kernel function that is called once per configuration.
We could parallelize the calculation at a coarser level, though
parallelizing insertions within a configuration appears to be most
appropriate for GPUs, as discussed in Section 1. We must still
decide how to divide the work among threads within a single
call to the kernel function. Two common approaches to this type
of problem are the scatter and gather paradigms [11]. In the
scatter paradigm, we assign to each thread an input datum, in
this case a coordinate of a given particle in the configuration. The
thread would then compute all contributions of that input datum
to the output data, in this case the energies of all insertions or
deletions performed in the box. On the other hand, under the
gather paradigm, we assign each thread to one or more insertions
or deletions, and the thread would gather all contributions from
existing particles to the energy of the insertions or deletions.
In general, the gather paradigm is preferred, since it avoids
atomic operations and barrier synchronization, operations that
reduce performance. However, the scatter paradigm can be more
attractive if the output data is more regular than the input data.
In the case of chemical potential calculations, the input data is
very irregular; particle coordinates follow a non-linear spatial
distribution function. Consequently, the locations of deletions
would also be very irregular. We perform insertions at random,
though we could equivalently perform them on a regular grid,
since the frame of reference of the configurations is arbitrary.
Given the regularity of the output data, a scatter implementation
of the chemical potential calculation could potentially perform
well, however it is outside the scope of this paper. Instead, we
have opted for a gather implementation in order to avoid atomic
operations and barrier synchronization. In this case there is no
benefit to regularizing the output data, so we perform insertions
at random using the CURAND library [17] to generate random
numbers independently in each thread.

We must still contend with the irregularity of the input data.
One established technique for regularizing input data is the
combination of truncation of interactions and binning [11]. In the
context of particle simulations, binning is usually achieved through
a cell list [14], which can be computed once per configuration.
Fortunately, there already exists a fast implementation of a cell
list on GPUs in the molecular dynamics package HOOMD-blue.
This package can read in a configuration and output the contents
of a given cell, as well as enumerate all neighboring cells in a
cubic neighborhood of arbitrary radius. We felt it would be wise
to further regularize the input data, since we could potentially
be performing very large numbers of insertions per configuration
of a dense, strongly-interacting system. The data contained in
the cubic neighborhood of cells is still somewhat irregular, since
some particles near the corners and edges of the neighborhood
will always be outside the truncation radius of particles inside the
center cell. Therefore, we shave off these corners and edges from
the neighborhood. By eliminating extraneous particles in these
regions, we improve performance of the kernel function.

Having determined how to divide work among threads, we
must decide how to divide threads among blocks. Threads within
the same cell must frequently access the coordinates of particles
within that cell and its neighborhood. By storing these coordinates
in the pools of high-bandwidth shared memory belonging to each
block, we might improve performance. Therefore, we assign to
each block a cell within the cell list.

Regularizing the coordinates of particles in a configuration
accelerates the calculation of short-ranged, pair-wise energies
arising from Lennard-Jones interactions and the short-range

K.B. Daly et al. / Computer Physics Communications 183 (2012) 2054–2062 2057
portion of Coulombic interactions. For the long-range portion of
Coulombic interactions, the relevant input data has already been
regularized as part of the PPPM method [18]. The method takes as
input the coordinates of partial charges in the system, and outputs
the electrostatic potential computed on a regular grid. We then
simply interpolate this grid to find the potential at the location
of inserted or deleted particles, and multiply by the their partial
charges to find the resulting changes in energy. Note that inserted
or deleted particles do not need to be included in the electrostatic
potential itself, since the insertion or deletion is happening in
just the central periodic image. For the deletion case, we must
additionally subtract a spurious self-interaction term for each
particle in the deleted test molecule,

Uself,i =
2κ
√

π
q2i +

Ntp
j≠i

qiqjerf(κ|r⃗i − r⃗j|)
|r⃗i − r⃗j|

(11)

since each particle i and its j bonded neighbors already exist inside
the configuration. In the above equation, qi is the partial charge of
particle i. κ is reciprocal length parameter describing the Gaussian
screening charge density distribution for a given particle i,

ρGauss(r) = −qi(κ2/π)3/2 exp(−κ2r2). (12)

In Eq. (11), r⃗i is the position vector of particle i. Ntp is the
number of sites within the test molecule being deleted. The self-
interaction term in Eq. (11) can be computed ahead of time, and
the electrostatic potential grid must be computed only once per
configuration. This grid can be obtained from an existing PPPM
implementation in HOOMD-blue [19] with some modification,
since HOOMD-blue is amolecular dynamics package and therefore
requires only the electric field, not the electrostatic potential.

Algorithm 1 Perform insertions/deletions
Require: Ncell blocks are run on device
Require: blockDim · Ncell CURAND states are initialized
1: c ← blockIdx
2: Ic,T ← 0
3: Ic,O ← 0
4: Dc,O ← 0
5: Ith,T ← 0
6: Ith,O ← 0
7: Dth,O ← 0
8: for i = 0 to Nth do
9: j← threadIdx · Nth + i

10: if j < Ndel,c then
11: u← Udel(j)
12: b← B(u, V)
13: atomicAdd(Pdel,b, 1)
14: Dth,O ← exp(βu/2)
15: else
16: u← Uins()
17: b← B(u, V)
18: atomicAdd(Pins,b, 1)
19: Ith,T ← exp(−βu)
20: Ith,O ← exp(−βu/2)
21: end if
22: end for
23: atomicAdd(Ic,T , Ith,T)
24: atomicAdd(Ic,O, Ith,O)
25: atomicAdd(Dc,O,Dth,O)

The kernel function is summarized in Algorithm 1. This
pseudocode describes how the kernel function computes the sums
of Boltzmann factors for insertions (Ic) or deletions (Dc) for each
block c. These sums are computed for both the TPI method (T) and
the OS method (O). These sums are consolidated into estimates for
the chemical potential for either the NVT or NPT ensemble outside
of the kernel function on the CPU. Alternatively, the chemical
potential for the TPI and OS methods can be estimated using
histograms (Pins and Pdel), which are constructed by the binning
function B(u, V), where u is the change in potential energy and
V is the volume of the current configuration. Histograms are the
sole means of estimating the chemical potential using Bennett’s
method, and the optimal C value is computed at the end of the
simulation trajectory on the CPU.

Algorithm 2 Perform single deletion, Udel(j)
Require: Xc is stored in shared memory.
Require: 8 is stored in global memory.
1: u← 0
2: for k < Ntp do
3: r⃗k ← x⃗j,k
4: u← u+ Usr(Xc, r⃗k)+ Ulr(8, r⃗k)− Uself (k)
5: end for
6: return u

Algorithm 3 Perform single insertion, Uins({ξ})

Require: Xc is stored in shared memory.
Require: 8 is stored in global memory.
1: u← 0
2: q← Q ({ξ})
3: r⃗cent ← I({ξ})
4: for k < Ntp do
5: r⃗k ← r⃗cent + R(q) · d⃗k
6: u← u+ Usr(Xc, r⃗k)+ Ulr(8, r⃗k)
7: end for
8: return u

The kernel function performs a total of Nth · blockDim · Ncell
insertions and deletions, or perturbations, divided among
blockDim·Ncell threads. Each thread performs Nth perturbations,
and during each perturbation, either Udel(j) (Algorithm 2) or
Uins({ξ}) (Algorithm 3) is called to compute the deletion or inser-
tion potential energy, respectively. Both functions read values from
arrays containing the coordinates of particles in the cell neigh-
borhood, Xc , and the electrostatic potential grid, 8. Additionally,
Uins({ξ}) takes as input a set of randomly generated numbers {ξ}
to generate positions for the centers of mass of insertions, r⃗cent , as
well as quaternions [14], q, which then rotate the nominal posi-
tions of the Ntp sites belonging to the inserted molecule, d⃗k, using
a rotation matrix, R(q).

4. Validation and performance

4.1. Lennard-Jones particles

Although our code is optimized for dense, strongly-interacting
systems with complicated forcefields, we first report results for
a simple Lennard-Jones (LJ) liquid at T ∗ ≡ kT/ϵ = 0.851, a tem-
perature well below the critical temperature (T ∗c ≈ 1.316 [20]),
and ρ∗ ≡ ρσ 3

= 0.8, a density close to saturation (ρ∗sat(T
∗) ≈

0.77). Here, σ and ϵ denote the LJ size and energy parameters. LJ
systems near these conditions are known to converge easily using
all three chemical potential methods that we examined [6].

Each chemical potential method investigated here requires
configurations sampled from an ensemble, so we generated
these configurations using NVT molecular dynamics (MD) in
GROMACS 4.5.3 [21]. In principle we could have also generated

2058 K.B. Daly et al. / Computer Physics Communications 183 (2012) 2054–2062
Fig. 1. Converging estimate of the chemical potential using the TPI method
for different values of the number of insertions per configuration. ⃝, 5.1 · 103

insertions; △, 3.7 · 105 insertions; �, 3.7 · 107 insertions. The system consists of
2880 LJ particles at T ∗ = 0.851 and ρ∗ = 0.8. The two graphs represent the same
data with error bars omitted in the bottom plot for clarity.

these configurations on the GPU using Gromacs accelerated with
Simtk.org/Open-MM [22]. However, this code does not accelerate
simulations of dense, strongly-interacting systems to nearly the
same extent as it does simulations of other systems, notably
systems with implicit solvent [23]. To the best of our knowledge,
this limitation is true for other existing GPU codes as well, and
in Section 4.2, we describe calculations involving the TIP4P/2005
water model [24], a system that suffers from this limitation.
Therefore,wehave chosen to performmolecular dynamics onCPUs
in order to optimally allocate available GPU and CPU resources.

For the LJ system, we simulated 2880 particles with cut-
off r∗cut = 2.5 and standard long-range corrections [14]. We
maintained the temperature using the Nose–Hoover thermostat
with τ ∗ ≡ tσ(m/ϵ)1/2 = 5.65 [25], where m is the mass of an LJ
particle. We set the time step to 1t∗ = 0.005 and equilibrated the
system for 1.8 · 106 time steps. We then output configurations
every 2000 time steps, generating a total of 47807 equilibrium
configurations. Strictly speaking, we would have also needed
to generate equilibrium configurations from a system of 2881
particles at the same temperature and density, since the OS and
Bennett’s method are two-stage methods. However, using one set
of configurations is a good approximation provided the system is
large enough [6].

We performed chemical potential calculations with insertions
per configuration varying from 5.1 · 103 to 3.7 · 107 in number.
For methods requiring deletions, we held the number of deletions
fixed at 2880, the total number of particles in the system. This
number is already nearly a factor of two smaller than the lowest
number of insertions we examined, so performing deletions
consumes a small fraction of the total CPU time, and performing
even fewerwould provide little benefit.We report the convergence
of chemical potential calculations as a function of accumulated
insertions into the same MD trajectory in Figs. 1–3. The converged
estimate of βµex for runs with the highest number of insertions
per configuration varies from approximately−4.16 to−4.18, with
error bars that aremuch smaller than the size of the symbols. Error
bars are computed using the method of Flyvbjerg [26]. Estimates
like these in which the bias is much greater than the variance
have beenwidely observedwith these chemical potential methods
Fig. 2. Converging estimate of the chemical potential using the OS method
for different values of the number of insertions per configuration. ⃝, 5.1 · 103

insertions; △, 3.7 · 105 insertions; �, 3.7 · 107 insertions. All runs are performed
with 2880 deletions per configuration. The system is the same as in Fig. 1.

Fig. 3. Converging estimate of the chemical potential using Bennett’s Acceptance
Ratio method for different values of the number of insertions per configuration.
⃝, 5.1 · 103 insertions; △, 3.7 · 105 insertions; �, 3.7 · 107 insertions. All runs
are performed with 2880 deletions per configuration. The bottom plot shows the
convergence of parameter βC in Bennett’s Acceptance Radio method (see Eq. (5)
for details). The system is the same as in Fig. 1.

[6,7]. We note that a variation of 0.02 in βµex leads only to a 2%
change in fugacity. Furthermore, these estimates are all close to
−4.12, the value of βµex predicted by the equation of state of
Johnson et al. [27].

Bennett’s method appears to converge faster than the OS
method, which in turn converges faster than the TPI method,
especially for lower numbers of insertions per configuration.

K.B. Daly et al. / Computer Physics Communications 183 (2012) 2054–2062 2059
For example, Bennett’s method with 5.1 · 103 insertions per
configuration is already within the window of −4.20 < βµex <
−4.15 with slightly less than 106 total insertions (Fig. 3),
whereas the OS method with the same number of insertions per
configuration does not enter this window until 107 insertions
(Fig. 2), and the TPI method does not reach it until just under 108

insertions (Fig. 1). This improvement in performance is close to
what was observed in Ref. [6] for an LJ system at ρ∗ = 0.8 and
T ∗ = 1.0 with 1 insertion per configuration. For higher numbers
of insertions per configuration, the improvement in performance is
more modest, and all three methods appear to eventually exhaust
the configuration space of a test particle in a given N-particle
configuration. This exhaustion manifests itself as nearly identical
convergence trajectories for runs with 3.7 · 105 or more insertions
per configuration. Notice in Figs. 1–3 how these trajectories
have nearly the same shape, but are merely shifted along the
abscissa. Interestingly, when these trajectories are computed using
Bennett’s method, they are also slightly shifted along the ordinate.
We attribute this shifting to inaccuracy in βC . Although βC is well
converged, as demonstrated in Fig. 3, it is still computed under the
assumption of uncorrelated insertions and deletions in a given N-
particle configuration. Clearly, this assumption is invalid when the
configuration space for a test particle has been exhausted.

4.2. Water

We report results for a dense, strongly-interacting system of
saturated liquid water that is in principle relevant for a wide range
of biomolecular, process engineering, pharmaceutical, and other
important applications. However, we chose a system at an elevated
temperature of 470 K (T/Tc = 0.73) in order to make calculations
more feasible for less efficient chemical potential methods like
TPI. We modeled water with the TIP4P/2005 force field [24], in
which the rigid molecule is represented by three massless partial
charges and an LJ site. We truncated LJ interactions at 0.9 nm
and applied standard long-range corrections [14]. To calculate
electrostatic interactions,we used the Smooth ParticleMesh Ewald
(SPME) method [28]. We truncated the short-ranged component
at 0.9 nm, and used fourth-order interpolation and a maximum
grid-spacing of 0.1 nm for the long-ranged component. We set
κ at 3.47 nm−1. During the post-simulation chemical potential
calculation, we used the PPPM method [18] instead of the SPME
method, keeping the short-ranged cut-off at 0.9 nm while setting
κ at 5.12 nm−1 and the grid-spacing at 0.036 nm, and using sixth-
order interpolation.

We approximated a saturated liquid by fixing the pressure at 0
bar. Although this pressure is slightly below the vapor pressure,
the system cannot vaporize during the course of the simulation
because it still needs to overcome its latent heat of vaporization.
Tomaintain this pressure as well as a temperature of 470 K, we ran
NPT MD in Gromacs 4.5.3 using the Parrinello–Rahman barostat
and the Nose–Hoover thermostat, both with τ = 10 ps [25,29].
We set the time step at 2 fs and equilibrated a system of 2880
molecules for 5 ns. We then stored equilibrium configurations
every 1 ps, generating a total of 127742 configurations.

We performed chemical potential calculations with insertions
per configuration varying from 7.1 · 103 to 2.6 · 107 in number. We
held the number of deletions fixed at 2880 for methods requiring
deletions. We report the convergence of these calculations as a
function of accumulated insertions into the same MD trajectory
in Figs. 4–6. The OS method and Bennett’s method agree well
for runs with the highest number of insertions per configuration:
they yield estimates of βµex that differ by less than 0.005. The TPI
method does not converge as satisfactorily, as demonstrated by the
three runs in Fig. 4 that give estimates varying approximately from
−5.84 to −5.58. The bias in these runs appears to be much larger
Fig. 4. Converging estimate of the chemical potential using the TPI method
for different values of the number of insertions per configuration. ⃝, 7.1 · 103

insertions; △, 5.0 · 105 insertions; �, 2.6 · 107 insertions. The system consists of
2880 water molecules at 470 K and 0 bar. The two graphs represent the same data
with error bars omitted in the bottom plot for clarity.

Fig. 5. Converging estimate of the chemical potential using the OS Method
for different values of the number of insertions per configuration. ⃝, 7.1 · 103

insertions; △, 5.0 · 105 insertions; �, 2.6 · 107 insertions. All runs are performed
with 2880 deletions per configuration. The system is the same as in Fig. 4. Note that
the ordinate on the bottom plot is zoomed in relative to the bottom plot of Fig. 4.

than the variance, just as in the case of an LJ liquid. Unlike for the LJ
liquid, the TPI method does not appear exhaust the configuration
space of the test molecule in liquid water. This observation is not
surprising given the presence of rotational degrees of freedom in
the case of water molecules.

Intriguingly, both the OS and Bennett’s methods both appear
to exhaust the configuration space of the test molecule at roughly
the same point as they do for an LJ liquid: between 105 and 106

insertions per configuration. Moreover, both of these liquids are
near the saturation point, and their values of T/Tc are comparable.
This suggests that fluids at similar thermodynamics conditions
have similar statistics with respect to insertions and deletions

2060 K.B. Daly et al. / Computer Physics Communications 183 (2012) 2054–2062
Fig. 6. Converging estimate of the chemical potential using Bennett’s Acceptance
Ratio method for different values of the number of insertions per configuration.
⃝, 7.1 · 103 insertions; △, 5.0 · 105 insertions; �, 2.6 · 107 insertions. All runs
are performed with 2880 deletions per configuration. The bottom plot shows the
convergence of parameter βC in Bennett’s Acceptance Radiomethod (see Eq. (5) for
details). The system is the same as in Fig. 4. Note that the ordinate on the bottom
plot is zoomed in relative to the bottom plot of Fig. 4.

if we zero in on the intersection of the important configuration
space of the N-molecule system and that of the N + 1-molecule
system. Kofke and coworkers have illustrated the importance of
this intersection for free-energy calculations [6]. For an LJ fluid,
this intersection is relatively large, so we see the same onset
of exhaustion for the TPI method as we do with the other two
methods, and little difference in performance. On the other hand,
for water the intersection is much smaller, so we observe no onset
for the TPImethod, and a remarkable improvement in performance
using the other two methods, which are designed to target this
intersection.

Despite the weaknesses of the TPI method, even its imperfectly
converged results are not far off from −5.53, the value of βµex

corresponding to the vapor pressure calculated by Vega et al. using
Gibbs–Duhem integration [30]. Moreover, the maximum variation
of∼0.2 inβµex at the end of the trajectories in Fig. 4 corresponds to
a change of only∼20% in the fugacity. Fortunately, the availability
of the OS and Bennett’s methods means that we can do much
better. The close agreement between the twomethods suggest that
any residual bias is minimal.

Better sampling efficiency does not necessarily translate to
overall efficiency, a measure of performance that additionally
accounts for computational cost. To obtain this second measure,
we focus on convergence as a function of CPU time, as shown in
Fig. 7. This figure shows that the most efficient way to achieve
less than 1% deviation from the converged fugacity is to use
Bennett’s method with 5 · 105 insertions per configuration. The
corresponding execution time is a little over 15 min on a single
graphics card, demonstrating how feasible these difficult chemical
potential calculations become on GPUs. When we set a looser
criterion of 10% deviation, we notice a key difference between the
TPI method and Bennett’s method. The TPI method favors 2.6 ·
107 insertions per configuration, whereas Bennett’s method favors
Fig. 7. Converging estimate of the fugacity f as a function of CPU time for the
system of Fig. 4. The ‘‘true’’ value of the fugacity is taken to be the value computed at
the end of the trajectory during the runwith 2.6·107 insertions per configuration. σ
is the standard deviation using themethod of Flyvbjerg [26].⃝, 7.1·103 insertions;
△, 5.0 · 105 insertions; �, 2.6 · 107 insertions. Top three curves: the TPI method.
Bottom three curves: Bennett’s Acceptance Ratio method. All runs are performed
on an NVIDIA GTX 580 graphics card.

Fig. 8. Time needed to perform a given number of perturbations in a single frame of
TIP4P/2005water at 470 K and 0 bar.×, system of 2880watermolecules on NVIDIA
GTX 580; the number of perturbations equals the number of insertions plus 2880
deletions.⃝, system of 2880 water molecules on 4 × 2.92 GHz CPU cores using
GROMACS 4.5.3 [21]. Since GROMACS supports only the TPI method, the number of
perturbations is equal to the number of insertions.

5 · 105 insertions. Yet regardless of the method, lower numbers of
insertions per configuration should always give higher sampling
efficiencies, implying that higher numbers of insertions per frame
are more computationally efficient. This implication is confirmed
by Fig. 8, which demonstrates that up to 2.6 · 106 insertions per
configuration, fixed performance costs overpower the variable cost
of insertions.

Interestingly, these fixed costs appear to be specific to GPUs;
results for the GROMACS CPU code in Fig. 8 show more or less
linear scaling of CPU time all the way down to 104 insertions
per configuration. These fixed costs also manifest themselves as
variations in performance of the GPU code with varying numbers
of cells in the cell list, as Fig. 9 shows. The optimal cell list is
larger for higher numbers of insertions per configuration. A larger
cell list would give a finer approximation for the neighborhood of

K.B. Daly et al. / Computer Physics Communications 183 (2012) 2054–2062 2061
Fig. 9. Performance as a function of the number of insertions per configuration, the
number of cells in the cell list, (Ncell), and the number of threads in a thread block.
⃝, 32 threads;△, 64 threads; �, 128 threads; ♦, 256 threads;×, 512 threads. Top:
time needed to perform 2.6 · 106 insertions in a single frame of 2880 TIP4P/2005
water molecules at 470 K and 0 bar. Bottom: same systemwith 2.6 · 107 insertions.

Fig. 10. Fraction of total execution time spent on different tasks while computing
chemical potential of a system of 2880 water molecules at 470 K and 0 bar. Top:
4.7 ·104 insertions per configuration. Bottom: 2.6 ·107 insertions per configuration.
In both cases the number of deletions per configuration is 2880.

particles that lie within the cut-off of particles in a given cell. This
improved approximation would in turn accelerate the calculation
of insertion energies, which is a variable cost. On the other hand,
a larger cell list would lead to larger fixed costs, since each
cell neighborhood has to be regularized by removing extraneous
particles near corners and edges, as described in Section 3. Indeed,
whenwe decompose the total CPU time into time spent on specific
tasks, as done in Fig. 10, we see that regularizing the cell list as
well as other fixed costs dominate the CPU time at lower numbers
of insertions per frame. If we operate outside of this regime, we
realize the full of benefit of the GPU code, observing a 16-fold
reduction in CPU time going from a four-core CPU to a GPU.

5. Conclusions

In this paper we have described an implementation of single-
stage and two-stage free-energy methods on GPUs, with emphasis
on calculating the chemical potential. We also discussed the
optimal number of insertions per configuration that balances
sampling efficiency with computational efficiency. This optimum
can be O(105) for dense, strongly-interacting systems of small
molecules, and is higher for a single-stage method than for a two-
stage one. Extremely high numbers of insertions per configuration
eventually exhaust the configuration space for a test particle,
though the onset of this exhaustion can vary by orders of
magnitude depending on the system and the method. However,
for very different systems at similar reduced conditions, the onset
is similar if sampling is restricted to configuration space that is
important to both initial and final states corresponding to the free-
energy difference.

For O(106) insertions per configuration and beyond, the GPU
performs over 60 times faster than a single CPU core. This
improvement in performance makes GPUs especially well-suited
for dense, strongly-interacting systems of small molecules. At
low numbers of insertions per configuration, fixed performance
costs dominate the execution time. These fixed costs include
regularizing the input data, a task that is necessary to improve
performance for high numbers of insertions per configuration.

This paper adds to the growing number of calculations on
particle systems that have been dramatically accelerated by
running on GPUs.Moreover, the code presented in this paper could
easily be extended to perform other types of Monte Carlo moves
in parallel, such as configurational-bias moves in polymer systems
and in dense systems like water. For example, an external Grand-
Canonical Monte Carlo code could call functions within our code to
performmany trial insertions of a polymer. Each thread would not
only insert the first bead, but also grow the rest of the chain using
Rosenbluth Sampling [14, pp. 271–287]. Our code would then
return the fully-grown polymer configurations and Rosenbluth
weights to the client Monte Carlo code, which would choose the
permanent insertion configuration according to the weights and
a randomly generated number. This approach of packaging GPU
code as an external library has already been successfully used in
the Simtk.org/OpenMM project to accelerate Molecular Dynamics
codes like Gromacs [22].

Acknowledgments

P.G.D. gratefully acknowledges the support of the National
Science Foundation (Grant No. CHE-0908265). A.Z.P. would like to
acknowledge support for thiswork from theDepartment of Energy,
Office of Basic Energy Sciences, under grant DE-SC0002128.

References

[1] A. Pohorille, C. Jarzynski, C. Chipot, Good practices in free-energy calculations,
The Journal of Physical Chemistry B 114 (2010) 10235–10253.

[2] X. Li, F. Li, Y. Shi, Q. Chen, H. Sun, Predicting water uptake in
poly(perfluorosulfonic acids) using force field simulation methods, Phys-
ical Chemistry Chemical Physics (2010).

[3] B. Widom, Structure of interfaces from uniformity of the chemical potential,
Journal of Statistical Physics 19 (1978) 563–574.

[4] B. Widom, Some topics in the theory of fluids, The Journal of Chemical Physics
39 (1963) 2808.

[5] Charles H. Bennett, Efficient estimation of free energy differences fromMonte
Carlo data, Journal of Computational Physics 22 (1976) 245–268.

2062 K.B. Daly et al. / Computer Physics Communications 183 (2012) 2054–2062
[6] N. Lu, J.K. Singh, D.A. Kofke, Appropriate methods to combine forward and
reverse free-energy perturbation averages, The Journal of Chemical Physics
118 (2003) 2977.

[7] M.R. Shirts, V.S. Pande, Comparison of efficiency and bias of free energies
computed by exponential averaging, the Bennett acceptance ratio, and
thermodynamic integration, The Journal of Chemical Physics 122 (2005)
144107.

[8] A.M. Hahn, H. Then, Measuring the convergence of Monte Carlo free-energy
calculations, Physical Review E 81 (2010) 041117.

[9] D.A. Kofke, P.T. Cummings, Quantitative comparison and optimization of
methods for evaluating the chemical potential by molecular simulation,
Molecular Physics 92 (1997) 973–996.

[10] T.D. Nguyen, C.L. Phillips, J.A. Anderson, S.C. Glotzer, Rigid body constraints
realized in massively-parallel molecular dynamics on graphics processing
units, Computer Physics Communications 182 (2011) 2307–2313.

[11] W.Hwu,GPUComputingGemsEmerald Edition,MorganKaufmannPublishers
Inc., 2011.

[12] NVIDIA, CUDA C best practices guide, NVIDIA, Santa Clara, CA, 2012.
[13] M. Deserno, C. Holm, How to mesh up Ewald sums. I. A theoretical and

numerical comparison of various particle mesh routines, The Journal of
Chemical Physics 109 (1998) 7678–7693.

[14] D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to
Applications, Academic Press, 2002.

[15] K.S. Shing, S.T. Chung, Computer simulation methods for the calculation
of solubility in supercritical extraction systems, The Journal of Physical
Chemistry 91 (1987) 1674–1681.

[16] NVIDIA, CUDA C programming guide 4.1, NVIDIA, Santa Clara, CA, 2011.
[17] NVIDIA, CUDA toolkit 4.0 CURAND guide, NVIDIA, Santa Clara, CA, 2011.
[18] R. Hockney, J. Eastwood, Computer Simulation Using Particles, Institute of

Physics, 1992.
[19] D.N. LeBard, B.G. Levine, P. Mertmann, S.A. Barr, A. Jusufi, S. Sanders, M.L.
Klein, A.Z. Panagiotopoulos, Self-assembly of coarse-grained ionic surfactants
accelerated by graphics processing units, Soft Matter (2012).

[20] B. Smit, Phase diagrams of Lennard-Jones fluids, The Journal of Chemical
Physics 96 (1992) 8639–8640.

[21] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: algorithms for
highly efficient, load-balanced, and scalable molecular simulation, Journal of
Chemical Theory and Computation 4 (2008) 435–447.

[22] P. Eastman, V. Pande, OpenMM: a hardware-independent framework for
molecular simulations, Computing in Science & Engineering 12 (2010) 34–39.

[23] GPUs—Gromacs, 2012. http://www.gromacs.org/Downloads/Installation_
Instructions/GPUs (accessed: 26.04.2012).

[24] J.L.F. Abascal, C. Vega, A general purpose model for the condensed phases of
water: TIP4P/2005, The Journal of Chemical Physics 123 (2005) 234505.

[25] S. Nosé, A unified formulation of the constant temperature molecular
dynamics methods, The Journal of Chemical Physics 81 (1984) 511.

[26] H. Flyvbjerg, Error estimates on averages of correlated data, Advances in
Computer Simulation (1998) 88–103.

[27] J.K. Johnson, J.A. Zollweg, K.E. Gubbins, The Lennard-Jones equation of state
revisited,Molecular Physics: An International Journal at the Interface Between
Chemistry and Physics 78 (1993) 591.

[28] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A
smooth particle mesh Ewald method, Journal of Chemical Physics 103 (1995)
8577–8593.

[29] M. Parrinello, Polymorphic transitions in single crystals: a new molecular
dynamics method, Journal of Applied Physics 52 (1981) 7182.

[30] C. Vega, J.L.F. Abascal, I. Nezbeda, Vapor–liquid equilibria from the triple point
up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew,
TIP4P/2005, and TIP4P/ice, The Journal of Chemical Physics 125 (2006) 034503.

http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs

	Massively parallel chemical potential calculation on graphics processing units
	Introduction
	Chemical potential methods
	Implementation
	Validation and performance
	Lennard-Jones particles
	Water

	Conclusions
	Acknowledgments
	References

